Jupyter Notebook

Integrate scRNA-seq datasets#

scRNA-seq data integration is the process of combining and analyzing data from several scRNA sequencing experiments to uncover common or distinct biological insights and patterns.

Here, we’ll demonstrate how to fetch two scRNA-seq datasets by registered metadata such as cell types to finally integrate them.

Setup#

!lamin load test-scrna
Hide code cell output
πŸ’‘ found cached instance metadata: /home/runner/.lamin/instance--testuser1--test-scrna.env
βœ… loaded instance: testuser1/test-scrna

import lamindb as ln
import lnschema_bionty as lb
import pandas as pd
import anndata as ad
βœ… loaded instance: testuser1/test-scrna (lamindb 0.51.0)
ln.track()
πŸ’‘ notebook imports: anndata==0.9.2 lamindb==0.51.0 lnschema_bionty==0.30.0 pandas==1.5.3
βœ… saved: Transform(id='agayZTonayqAz8', name='Integrate scRNA-seq datasets', short_name='scrna2', version='0', type=notebook, updated_at=2023-08-28 18:24:59, created_by_id='DzTjkKse')
βœ… saved: Run(id='R3YaKMp4bwPSVFk6GjsX', run_at=2023-08-28 18:24:59, transform_id='agayZTonayqAz8', created_by_id='DzTjkKse')

Query files based on metadata#

assays = lb.ExperimentalFactor.lookup()
species = lb.Species.lookup()
query = ln.File.filter(
    experimental_factors=assays.single_cell_rna_sequencing,  # scRNA-seq
    species=species.human,  # human
    cell_types__name__contains="monocyte",  # monocyte
).distinct()
query.df()
storage_id key suffix accessor description version initial_version_id size hash hash_type transform_id run_id updated_at created_by_id
id
L5bU7hgOWmZM2VCa5A5I AXBBarQq None .h5ad AnnData 10x reference pbmc68k None None 589484 eKVXV5okt5YRYjySMTKGEw md5 Nv48yAceNSh8z8 CHafmKbEL0RBBfWOoz0J 2023-08-28 18:24:53 DzTjkKse
ZYlkASClrCMvJB45qd7X AXBBarQq None .h5ad AnnData Conde22 None None 28049505 WEFcMZxJNmMiUOFrcSTaig md5 Nv48yAceNSh8z8 CHafmKbEL0RBBfWOoz0J 2023-08-28 18:24:42 DzTjkKse

Intersect measured genes between two datasets#

# get file objects
file1, file2 = query.list()
file1.describe()
πŸ’‘ File(id='L5bU7hgOWmZM2VCa5A5I', key=None, suffix='.h5ad', accessor='AnnData', description='10x reference pbmc68k', version=None, size=589484, hash='eKVXV5okt5YRYjySMTKGEw', hash_type='md5', created_at=2023-08-28 18:24:53, updated_at=2023-08-28 18:24:53)

Provenance:
    πŸ—ƒοΈ storage: Storage(id='AXBBarQq', root='/home/runner/work/lamin-usecases/lamin-usecases/docs/test-scrna', type='local', updated_at=2023-08-28 18:24:58, created_by_id='DzTjkKse')
    πŸ“” transform: Transform(id='Nv48yAceNSh8z8', name='Validate & register scRNA-seq datasets', short_name='scrna', version='0', type='notebook', updated_at=2023-08-28 18:24:53, created_by_id='DzTjkKse')
    πŸ‘£ run: Run(id='CHafmKbEL0RBBfWOoz0J', run_at=2023-08-28 18:24:03, transform_id='Nv48yAceNSh8z8', created_by_id='DzTjkKse')
    πŸ‘€ created_by: User(id='DzTjkKse', handle='testuser1', email='testuser1@lamin.ai', name='Test User1', updated_at=2023-08-28 18:24:58)
Features:
  var (X):
    πŸ”— index (695, bionty.Gene.id): ['SkU86c6dfr0B', 'wUYYqQhHOQ1T', 'FJ4p0HleLknx', 'mLZxpATriwGh', '54Nah0TGq83q'...]
  external:
    πŸ”— assay (1, bionty.ExperimentalFactor): ['single-cell RNA sequencing']
    πŸ”— species (1, bionty.Species): ['human']
  obs (metadata):
    πŸ”— cell_type (9, bionty.CellType): ['CD14-positive, CD16-negative classical monocyte', 'CD16-positive, CD56-dim natural killer cell, human', 'cytotoxic T cell', 'B cell, CD19-positive', 'effector memory CD4-positive, alpha-beta T cell, terminally differentiated']
file1.view_lineage()
https://d33wubrfki0l68.cloudfront.net/3ffe61a4847e1234d192096e4bcf74f8d3a04be3/e2dee/_images/d4526125ff8478691830e6e8234d00dda6962e7ee6d5fe2b7a3a24eee3a6bab7.svg
file2.describe()
πŸ’‘ File(id='ZYlkASClrCMvJB45qd7X', key=None, suffix='.h5ad', accessor='AnnData', description='Conde22', version=None, size=28049505, hash='WEFcMZxJNmMiUOFrcSTaig', hash_type='md5', created_at=2023-08-28 18:24:42, updated_at=2023-08-28 18:24:42)

Provenance:
    πŸ—ƒοΈ storage: Storage(id='AXBBarQq', root='/home/runner/work/lamin-usecases/lamin-usecases/docs/test-scrna', type='local', updated_at=2023-08-28 18:24:58, created_by_id='DzTjkKse')
    πŸ“” transform: Transform(id='Nv48yAceNSh8z8', name='Validate & register scRNA-seq datasets', short_name='scrna', version='0', type='notebook', updated_at=2023-08-28 18:24:53, created_by_id='DzTjkKse')
    πŸ‘£ run: Run(id='CHafmKbEL0RBBfWOoz0J', run_at=2023-08-28 18:24:03, transform_id='Nv48yAceNSh8z8', created_by_id='DzTjkKse')
    πŸ‘€ created_by: User(id='DzTjkKse', handle='testuser1', email='testuser1@lamin.ai', name='Test User1', updated_at=2023-08-28 18:24:58)
Features:
  var (X):
    πŸ”— index (36390, bionty.Gene.id): ['nhFjFmu1xBZI', 'SqsX0a250Sys', 'mkHhz0ai3yXT', 'NA1yysqkE6PQ', 'imiSu6lCPdLv'...]
  obs (metadata):
    πŸ”— cell_type (32, bionty.CellType): ['CD16-positive, CD56-dim natural killer cell, human', 'macrophage', 'mucosal invariant T cell', 'naive thymus-derived CD4-positive, alpha-beta T cell', 'plasmablast']
    πŸ”— assay (4, bionty.ExperimentalFactor): ["10x 5' v2", "10x 5' v1", "10x 3' v3", 'single-cell RNA sequencing']
    πŸ”— tissue (17, bionty.Tissue): ['thoracic lymph node', 'omentum', 'skeletal muscle tissue', 'blood', 'jejunal epithelium']
    πŸ”— donor (12, core.Label): ['A52', 'A35', '637C', 'A36', 'D503']
file2.view_lineage()
https://d33wubrfki0l68.cloudfront.net/f122bbf2784fcd804da492f6aaaa09d811d9006d/d22c6/_images/a44f472f6c9eda59253a71b6c9981deeb1f0dbdbcf0fede3077798686ccf9f2a.svg

Load files into memory:

file1_adata = file1.load()
file2_adata = file2.load()
πŸ’‘ adding file L5bU7hgOWmZM2VCa5A5I as input for run R3YaKMp4bwPSVFk6GjsX, adding parent transform Nv48yAceNSh8z8
πŸ’‘ adding file ZYlkASClrCMvJB45qd7X as input for run R3YaKMp4bwPSVFk6GjsX, adding parent transform Nv48yAceNSh8z8

Here we compute shared genes without loading files:

file1_genes = file1.features["var"]
file2_genes = file2.features["var"]

shared_genes = file1_genes & file2_genes
len(shared_genes)
695
shared_genes.list("symbol")[:10]
['SUPT4H1',
 'FGR',
 'PSMB6',
 'NUDCD2',
 'SPINT2',
 'DNAJB1',
 'EAF2',
 'ANKRD12',
 'LY6E',
 'GABARAPL2']

We also need to convert the ensembl_gene_id to symbol for file2 so that they can be concatenated:

mapper = pd.DataFrame(shared_genes.values_list("ensembl_gene_id", "symbol")).set_index(
    0
)[1]
mapper.head()
0
ENSG00000213246    SUPT4H1
ENSG00000000938        FGR
ENSG00000142507      PSMB6
ENSG00000170584     NUDCD2
ENSG00000167642     SPINT2
Name: 1, dtype: object
file2_adata.var.rename(index=mapper, inplace=True)

Intersect cell types#

file1_celltypes = file1.cell_types.all()
file2_celltypes = file2.cell_types.all()

shared_celltypes = file1_celltypes & file2_celltypes
shared_celltypes_names = shared_celltypes.list("name")
shared_celltypes_names
['CD16-positive, CD56-dim natural killer cell, human',
 'conventional dendritic cell']

We can now subset the two datasets by shared cell types:

file1_adata_subset = file1_adata[
    file1_adata.obs["cell_type"].isin(shared_celltypes_names)
]

file2_adata_subset = file2_adata[
    file2_adata.obs["cell_type"].isin(shared_celltypes_names)
]

Concatenate subseted datasets:

adata_concat = ad.concat(
    [file1_adata_subset, file2_adata_subset],
    label="file",
    keys=[file1.description, file2.description],
)
adata_concat
AnnData object with n_obs Γ— n_vars = 126 Γ— 695
    obs: 'cell_type', 'file'
    obsm: 'X_umap'
adata_concat.obs.value_counts()
cell_type                                           file                 
CD16-positive, CD56-dim natural killer cell, human  Conde22                  114
conventional dendritic cell                         Conde22                    7
CD16-positive, CD56-dim natural killer cell, human  10x reference pbmc68k      3
conventional dendritic cell                         10x reference pbmc68k      2
dtype: int64
Hide code cell content
# clean up test instance
!lamin delete --force test-scrna
!rm -r ./test-scrna
πŸ’‘ deleting instance testuser1/test-scrna
βœ…     deleted instance settings file: /home/runner/.lamin/instance--testuser1--test-scrna.env
βœ…     instance cache deleted
βœ…     deleted '.lndb' sqlite file
❗     consider manually deleting your stored data: /home/runner/work/lamin-usecases/lamin-usecases/docs/test-scrna